منابع مشابه
Designing Hydrolytic Zinc Metalloenzymes
Zinc is an essential element required for the function of more than 300 enzymes spanning all classes. Despite years of dedicated study, questions regarding the connections between primary and secondary metal ligands and protein structure and function remain unanswered, despite numerous mechanistic, structural, biochemical, and synthetic model studies. Protein design is a powerful strategy for r...
متن کاملZinc and Health: Current Status and Future Directions Function and Mechanism of Zinc Metalloenzymes
Zinc is required for the activity of . 300 enzymes, covering all six classes of enzymes. Zinc binding sites in proteins are often distorted tetrahedral or trigonal bipyramidal geometry, made up of the sulfur of cysteine, the nitrogen of histidine or the oxygen of aspartate and glutamate, or a combination. Zinc in proteins can either participate directly in chemical catalysis or be important for...
متن کاملSurprising cofactors in metalloenzymes.
Transition metal complexes are located at the active sites of a number of enzymes involved in intriguing biochemical reactions. These complexes can exhibit a wide variety of chemical reactivity due to the ease at which transition metals can adopt different coordination environments and oxidation states. Crystallography has been a powerful technique for examining the structure and conformational...
متن کاملArtificial metalloenzymes for enantioselective catalysis.
Artificial metalloenzymes have emerged over the last decades as an attractive approach towards combining homogeneous catalysis and biocatalysis. A wide variety of catalytic transformations have been established by artificial metalloenzymes, thus establishing proof of concept. The field is now slowly transforming to take on new challenges. These include novel designs, novel catalytic reactions, ...
متن کاملRational design of nascent metalloenzymes.
Understanding the early genesis of new enzymatic functions is one of the challenges in protein design, mechanistic enzymology, and molecular evolution. We have experimentally mimicked starting points in this process by introducing primitive iron and oxygen binding sites at various locations in thioredoxin, a small protein lacking metal centers, by using computational design. These rudimentary a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biochemistry
سال: 2014
ISSN: 0006-2960,1520-4995
DOI: 10.1021/bi4016617